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Error function
 True value – Approximate value = Error

 The inherent error is that quantity which is already present in 
the statement of the problem before its solution

 The round-off error is the quantity R which must be added to 
the finite representation of a computed number in order to 
make it the true representation of that number.

 The truncation error is the quantity T which must be added 
to the true representation of the quantity  in order that the 
result be exactly equal to the quantity we are seeking to 
generate. 
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Newton-Raphson method

 Formula.

Multiple root of multiplicity m

Intermediate Value Theorem: If f(x) is a continuous 
function on some interval [a,b] and f(a) f(b)< 0, then 
the equation f(x) = 0 has at least one or an odd 
number of real roots in the interval (a,b). 



Qn:Determine the initial approximation to find the

smallest positive root. also find the smallest root

correct to 4 decimal places

Solution:

f(1) = -10 and f(2) = 4

The interval  (1,2) is the smallest positive root lies.

Put x0 = 2, we get

x1 = 1.8710, x2= 1.8558, x3 = 1.8556, x4= 1.8556

The smallest root is 1.8556
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Qn:Determine the initial approximation to find  

the smallest positive root. also find the smallest 

root correct to 4 decimal places

 Solution:

f(0) =-1, f(1) = 0.6321. The smallest positive root is      
lying between (0,1) 

Put x0 = 1, we get

x1 = 0.5379, x2= 0.5670, x3 = 0.5671, x4= 0.5671

The smallest root is 0.5671
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Secant Method

In this  we need 2 initial approximate values xk-1 and xk .

The order of this method is 1.62

If the approximations are chosen such that f(xk).f(xk-1)< 0

for each k, then the method is known as Regula-Falsi method

and has the first order rate of convergence.
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Qn:Determine the initial approximation to find the 

smallest positive root. also find the smallest rot correct 
to 4 decimal places    f(x) = x4 –x-10

Solution:  

f(1) = -10 and f(2) = 4

The interval  (1,2) is the smallest positive root lies.

Put x0= 1 and  x1=2 we get

x2 = 1.7143,  x3 = 1.8385, x4= 1.8578, x5= 1.8556,x6 =1.8556

The solution is 1.8556
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Determine the initial approximation to find the smallest positive root. 

also find the smallest rot correct to 4 decimal places  f(x) = x- e-x 

 Solution:

f(0) =-1, f(1) = 0.6321. The smallest positive root is 

lying between (0,1) 

f(x) = x- e-x , x0= 0, x1= 1

x2= 0.6127, x3= 0.5638,x4=0.5671, x5=0.5671

 Regula-falsi method

x2= 0.6127, x3= 0.5722,x4=0.5677, x5=0.5672
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Chebyshev Method

 Write f(x) = f(xk + x –xk) and approximating f(x) by a second 
drgree Tayler series expansion about the point xk, we obtain

 Whose order is p=3. This method requires one

function, one first derivative and one second erivative
evaluation per itration. 
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Ex: Find the smallest root correct to 6 decimal places 

by Chebyshev Method f(x) =x3- 5x +1, take xo= 0.5

Solution:

f’(x) = 3x2-6,     f’’(x) = 6x

f(0.5) = -1.375, f’(0.5) = -4.25, f’’(0.5) = 3

x1= 0.213414

f(0.213414) = -0.057350,   f’(0.213414) = -4.863363,  

f’’(0.213414) = 1.280484

x2 = 0.201640
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Ex:  Find the smallest root correct to 6 decimal places by Chebyshev Method

,          take xo= 1.0

Solution:

f(1) = -2.17797952, f’(1) = -6.27803464, f’’(1) = -8.69514779

x1= 0.56973365

f(x1) = -0.16512827, f’(x1) = -3.31437687, f’’(x1) = -5.38480989

x2 = 0.51789543

f(x2 ) = -0.00042006, f’(x2 ) = -3.04282712, f’’(x2 ) = -5.09512887

x3 = 0.51775736
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Ex: Find the  approximate value of 1/7   by Chebyshev Method, do two iteration
take xo= 0.1

Solution:

x0= 0.1

f(x0) = 3, f’(x0) = -100, f’’(x0) = 2000, substitute in the following 

x1= 0.1 + 0.03 - 0.5(0.0009)(-20) = 0.139

x1= 0.139

f(x1) = 0.194245, f’(x1) = -51.757155, f’’(x1) = 744.707272

x2 = 0.139 +0.003753 – 0.5 (0.000014)(-14.388489)  = 0.142854
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Multipoint iteration Method

 This method need only one  approximation

and one derivative.
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Ex: Find the smallest root correct to 6 decimal places by Multipoint Method
f(x) =x3- 5x +1, take xo= 0.5 do two iteration

Solution:

f(x) =x3- 5x +1,f’(x) = 3x2-6,

xo= 0.5     

f(0.5) = -1.375, f’(0.5) = -4.25, substitute in the formula

x1= 0.205445

f(x1) = -0.018554, f’(x1) = -4.873377, substitute in the formula

x2 = 0.201640

Prof.Joshy Xavier



Ex:  Find the smallest root correct to 6 decimal places by Multipoint Method

,    take xo= 1.0, three iteration

Solution:

,    take xo= 1.0,  

f(1) = -2.17797952, f’(1) = -6.27803464, substitute in the formula

x1= 0.57970578

f(x1) = -0.19844837, f’(x1) = -3.36836305, substitute in the formula

x2 = 0.51804416

f(x2 ) = -0.00087268, f’(x2 ) = -3.04358498, substitute in the formula

x3 = 0.51775736
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Muller Method
 This need three initial values.

 The sign of the denominator is chosen as that of  a1 , so that the     
denominator has the maximum absolute value.

 The rate of convergence of Muller method is 1.84
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Ex: Find the smallest root  by Muller Method for  f(x) =x3- 5x +1, (0,1) do three 

iteration

Solution:  

a2 = -3,      D = 0.25,  a1 = -2.5,      a0 = 1.5

x3 = 0.191857, the sign of the denominator is negative since a1 is negative.

a2 = -0.047777,  D = 0.124512,   a1 = -5.138588,   a0 = 1.691854

x4 = 0.201183, the sign of the denominator is negative since a1 is negative.

a2 = 0.002228, D = 0.006020, a1 = -4.871483, a0 = 1.393112

x5 = 0.201640,   the sign of the denominator is negative since a1 is negative.
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Ex: Find the smallest root  by Muller Method (0,1) do two iteration

Solution:  

a2 = -2.1780,      D = 2,  a1 = -4.8129,      a0 = -1.6349

x3 = 0.4415, the sign of the denominator is negative since a1 is negative

.

a2 = 0.2176,  D = 02466,   a1 = -2.8830,   a0 = -2.5170

x4 = 0.5126, the sign of the denominator is negative since a1 is negative.

f0 =0.9082, f1= 1, f2 = -2.1780

f1 =1,          f2= -2.178,        f3 = 0.2176
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